Sunday , March 7 2021

Calendar of the archaic hominin occupation of the Denisova cave in southern Siberia

  • 1

    Krause, J., et al. The complete genome of mitochondrial DNA from an unknown hominin from southern Siberia. Nature 464894-897 (2010).

  • 2

    Reich, D. et al. Genetic history of an archaic hominin group from Denisova Cave, Siberia. Nature 4681053-1060 (2010).

  • 3

    Derevianko, A.P. et al. Paleoenvironment and Human Paleolithic Occupation of Gorny Altai: Subsistence and Adaptation in the Surroundings of the Denisova Grotto (Institute of Archeology and Ethnography, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2003).

  • 4

    Bolikhovskaya, N. S. & Shunkov, M. V. Pleistocene environments of northwestern Altai: vegetation and climate. Archeology Ethnol. Anthropol. Eurasia 42, 2-17 (2014).

  • 5

    Agadjanian, A. K. & Shunkov, M. V. Evolution of the quaternary environment in northwest Altai. Archeology Ethnol. Anthropol. Eurasia 372-18 (2009).

  • 6

    Bolikhovskaya, N.S., Kozlikin, M.B., Shunkov, M.V., Uliyanov, V.A. & Faustov, S. S. New palynological data of the unique Paleolithic site of Denisova Cavern in northwest Altai. Bull. Soc Soc. Biol. Series 12246-60 (2017).

  • 7

    Vasiliev, S.K., Shunkov, M. V. & Kozlikin, M.B. Problems of archeology, ethnography and anthropology of Siberia and neighboring territories Vol. 23 (Eds Derevianko, A.P. et al.) 60-64 (Institute of Archeology and Ethnography, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 2017).

  • 8

    Turner, C.G.II. in Central-North, East Asia and Latin Paleolithic Chronostratigraphy (ed. Derevianko, A.P.) 239-243 (Institute of History, Philology and Philosophy, Siberian Branch of the Academy of Sciences of the USSR, Novosibirsk, 1990).

  • 9

    Shpakova, E. G. & Derevianko, A. P. The interpretation of the odontological characteristics of the Pleistocene human remains of the Altai. Archeology Ethnol. Anthropol. Eurasia 1, 125-138 (2000).

  • 10

    Mednikova, M. B. A proximal pedal phalanx of a Paleolithic hominid from Denisova Cave, Altai. Archeology Ethnol. Anthropol. Eurasia 39, 129-138 (2011).

  • 11

    Meyer, M., et al. Sequence of the genome of high coverage of an archaic denisovano individual. Science 338222-226 (2012).

  • 12

    Sawyer, S. et al. Nuclear and mitochondrial DNA sequences of two Denisovan individuals. Proc. Natl Acad. Sci. USA 11215696-15700 (2015).

  • 13

    Slon, V. et al. A fourth denisovano individual. Sci. Adv.. 3e1700186 (2017).

  • 14

    Prüfer, K. et al. The complete sequence of the genome of a Neanderthal from the Altai mountains. Nature 505, 43-49 (2014).

  • 15

    Brown, S. et al. Identification of a new hominin bone from Denisova Cave, Siberia, using the collection of collagen and mitochondrial DNA fingerprints. Sci. Representative. 623559 (2016).

  • 16

    Slon, V. et al. The genome of the offspring of a Neanderthal mother and a Denisovan father. Nature 561113-116 (2018).

  • 17

    Slon, V. et al. Neandertal DNA and denisovan from Pleistocene sediments. Science 356605-608 (2017).

  • 18

    Vlasov, V. K. & Kulikov, O. Radiothermoluminescence dating and applications to Pleistocene sediments. Phys. Chem. Miner. 16551-558 (1989).

  • 19

    Derevianko, A.P., Laukhin, S.A., Kulikov, O.A., Gnibidenko, Z.N. & Shunkov, M. V. First determinations of the Middle Pleistocene Age of the Paleolithic in the Altai Mountains. Dokl. Akad. Nauk 326497-501 (1992).

  • 20

    Huntley, D. J. Letters: Vlasov and Kulikov method. Anc. TL 1057-58 (1992).

  • 21

    Derevianko, A.P., Gnibidenko, Z. N. & Shunkov, M. V. Middle Pleistocene excursions of the geomagnetic field in the strata of the Denisova Cavern. Dokl. Akad. Nauk 360511-513 (1998).

  • 22

    Roberts, A. P. Geomagnetic excursions: known and unknown. Geophysics Res. Lett. 35L17307 (2008).

  • 23

    Laj, C. & Channell, J.E. Treaty on Geophysics (Volume 5: Geomagnetism) 2 ed. (Ed. Schubert, G.) 343-383 (Elsevier, Amsterdam, 2015).

  • 24

    Prüfer, K. et al. A high-coverage Neanderthal genome from the cave of Vindija, Croatia. Science 358655-658 (2017).

  • 25

    Huntley, D.J., Godfrey-Smith, D.I. & Thewalt, M.LW. Optical dating of sediments. Nature 313105-107 (1985).

  • 26

    Hütt, G., Jaek, I. & Tchonka, J. Optical Dating: K-feldspar optical response stimulation spectra. Quat. Sci. Rev.. 7381-385 (1988).

  • 27

    Roberts, R. G. et al. Optical Dating in Archeology: Thirty years in retrospect and great challenges for the future. J. Archaeol. Sci. 5641-60 (2015).

  • 28.

    Athanassas, C.D. & Wagner, G. A. Geochronology beyond radiocarbon: date of optically stimulated luminescence of paleoenvironments and archaeological sites. Elements 1227-32 (2016).

  • 29

    Shunkov, M. V. et al. The phosphates of the Pleistocene-Holocene sediments of the Oriental Gallery of the Denisova Grotto. Dokl. Earth Sci. 47846-50 (2018).

  • 30

    Rhodes, E. J. Dating sediments using the IRSL of a potassium feldspar grain: initial methodological considerations. Quat. Int. 36214-22 (2015).

  • 31

    Smedley, R.K., Duller, G.A. & Roberts, H.M. Whitening of IRSL signal after IR of individual K-feldspar grains: implications for single grain dating. Irradiated Meas. 79, 33-42 (2015).

  • 32

    Prokopenko, A.A., Hinnov, L.A., Williams, D.F., and Kuzmin, M. I. Orbital Forcing of the Continental Climate during the Pleistocene: a fully astronomically tuned climatic record of Lake Baikal, Southeastern Siberia. Quat. Sci. Rev.. 253431-3457 (2006).

  • 33

    Grygar, T. et al. Climate record of Lake Baikal between 310 and 50 ky bp: interaction between diatoms, weathering of river basins and orbital forcing. Palaeogeogr. Palaeoclimatol. Palaeoecol. 250, 50-67 (2007).

  • 34

    Melles, M. et al. Sedimentary geochemistry of the PG1351 core of El Gygytgyn Lake – a sensitive record of climatic variability in the Eastern Siberian Arctic during the last three glacial and interglacial cycles. J. Paleolimnol. 3789-104 (2007).

  • 35

    Frank, U. et al. A 350 ka record of climate change on Lake Elgygytgyn, Arctic Far East of Russia: refining the pattern of climate modes through cluster analysis. Last Clim 91559-1569 (2013).

  • 36

    Liu, W. et al. The first unmistakably modern humans in southern China. Nature 526, 696-699 (2015).

  • 37

    Westaway, K.E. et al. An ancient modern human presence in Sumatra 73,000-63,000 years ago. Nature 548322 to 325 (2017).

  • 38

    Hershkovitz, I. et al. The first modern humans out of Africa. Science 359456-459 (2018).

  • 39

    Groucutt, H. S. et al. Homo sapiens in Arabia 85,000 years ago. Nat. Ecol. Evol. 2, 800-809 (2018).

  • 40.

    Lisiecki, L. E. & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic18O records. Paleoceanography 20PA1003 (2005).

  • 41.

    Jacobs, Z. & Roberts, R. G. Advances in the date of optically stimulated luminescence of individual quartz grains from archaeological deposits. Evol. Anthropol. 16, 210-223 (2007).

  • 42.

    Wood, R. et al. For a precise and precise chronology for the colonization of Australia: the example of Riwi, Kimberley, Western Australia. PLoS ONE 11e0160123 (2016).

  • 43

    Clarkson, C. et al. Human occupation of northern Australia 65,000 years ago. Nature 547, 306-310 (2017).

  • 44

    Blegen, N. et al. Distal decipher of the eastern basin of Lake Victoria, equatorial East Africa: correlations, chronology and context for the first modern humans. Quat. Sci. Rev.. 12289-111 (2015).

  • 45

    Li, B., Jacobs, Z., Roberts, R. G., Galbraith, R. and Peng, J. Variability in OSL quartz signals caused by measurement uncertainties: problems and solutions. Quat. Geocrronol. 41, 11-25 (2017).

  • 46

    Li, B., Jacobs, Z., Roberts, R.G. & Li, S.-H. Data collection by individual grains of potassium-rich feldspar grains: towards a global standardized growth curve for the post-IR IRSL signal. Quat. Geocrronol. 4523-36 (2018).

  • 47

    Li, B., Jacobs, Z. & Roberts, R.G. An improved multiple aliquot regenerative dose (MAR) procedure for post-IR IRSL dating of feldspar-K. Anc. TL 351 to 10 (2017).

  • 48

    Bøtter-Jensen, L. & Mejdahl, V. Evaluation of the beta dose rate using a GM multicounter system. Nucl. Tracks Radiat. Meas. 14187-191 (1988).

  • 49.

    Prescott, J. R. and Hutton, J. T. Contribution of cosmic rays to dose rates of luminescence and ESR dating: large depths and long-term variations in time. Irradiated Meas. 23497-500 (1994).

  • 50

    Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337-360 (2009).

  • 51

    Bronk Ramsey, C. & Lee, S. Recent and planned developments of the OxCal program. Radiocarbon 55, 720-730 (2013).

  • Source link